• Latest
  • Trending

Contact Finish Degradation Mechanisms

September 10, 2022

Microwave Multi Line Connectors Mounting and Handling Precautions

March 27, 2023

Samtec New Interconnects Enhances Power and Signal Integrity

March 21, 2023
PCNS Passive Components Symposium 11-14th September 2023

PCB Via Design Selection; Plugging-Filling-Tenting

March 20, 2023

Lemo Releases New Multi Coaxial High Frequency Connector

March 2, 2023

Würth Elektronik Introduces Crimp SKEDD Connectors

March 1, 2023

binder Offers Sensor Connectors in Stainless-Steel to Protect Against Corrosion

March 1, 2023

Board-to-Board Connection & Antennas HF Connection

February 20, 2023

How to Ensure Board-to-Board Connectors Meet High-Speed Automotive Assembly and Use Requirements

February 16, 2023

Amphenol Enhanced its ePower-Lite EV Line to Include 3-Pole Connector

February 15, 2023

BASIC PCB Design Rules – Layout

February 15, 2023

Connector Inrush Current Explained

February 3, 2023

M8 Connectors for Smart Farming Applications

January 31, 2023
  • Privacy Policy
inter-connection blog
  • NEWS
  • Knowledge base
  • Sister Sites
    • Passive Components Blog
    • PCNS Symposium
    • The Passives Times
    • EPCI Home
  • About
No Result
View All Result
  • NEWS
  • Knowledge base
  • Sister Sites
    • Passive Components Blog
    • PCNS Symposium
    • The Passives Times
    • EPCI Home
  • About
No Result
View All Result
inter-connection blog
No Result
View All Result

Contact Finish Degradation Mechanisms

September 10, 2022
A A

The two most significant contact finish degradation mechanisms are corrosion and wear. While wear is a degradation mechanism, its main effect on connector degradation is to make the contact interface more susceptible to corrosion due to wear through of the contact finish with resultant exposure of the copper alloy contact spring.

Wear through of the finish can occur due to the multiple mating cycles the connector may experience during its application life time. That, however, is not the only active wear mechanism. Wear can also occur due to small motions of the contact interface due to mechanical or thermally generated stresses. These small scale motions, fractions of a micron to a few microns, are called fretting. While the wear that occurs during a mating cycle may be much more extensive, due to the larger sliding distance, than that of a fretting cycle, the number of fretting cycles a connector may experience in its application lifetime may be orders of magnitude larger than the number of mating cycles it will experience. Thus, fretting wear cannot be neglected in considering connector degradation mechanisms. In fact, as noted above, fretting wear leading to fretting corrosion is the primary degradation mechanism for tin contact finishes as will be discussed.

The discussion of corrosion as a degradation mechanism will be limited to noble metal and tin finishes. The corrosion related degradation of tin finishes is fretting corrosion as noted previously. In contrast, multiple corrosion mechanisms come into play for noble metal finishes. Recall that in Chapter I/1.2.3 Contact Finishes it was noted that, “the term “noble” refers to the fact that gold is not susceptible to corrosion in most environments.” This statement is true, the gold is not the source of corrosion products, exposed copper from the contact spring is the corrosion source. Due to this difference in corrosion mechanisms and susceptibility noble and non-noble degradation mechanisms will be discussed separately.

Related

Source: Wurth elektronik
Next Post

Noble Metal Finish Degradation Mechanisms

Nickel Underplates and Noble Metal Finish Wear

Non-Noble Finish Degradation Mechanisms

Popular Posts

  • Crimped Connections

    0 shares
    Share 0 Tweet 0
  • Basic Principles of Connectors

    0 shares
    Share 0 Tweet 0
  • Space Saving Molex Connector in AR/VR System designs

    0 shares
    Share 0 Tweet 0
  • THR (Through Hole Reflow) Technology: Introduction & History:

    0 shares
    Share 0 Tweet 0
  • The Electrical Interface: Contact Resistance

    0 shares
    Share 0 Tweet 0

Archive

2023
2022

  • About
  • Inter-Connection News
  • Knowledge base
  • NEWS
  • Privacy Policy
  • Sister Sites

© 2023 EPCI - Premium Passive Components & Inter-Connect News

No Result
View All Result
  • About
  • Inter-Connection News
  • Knowledge base
    • Applications
    • Basic Principles of Connectors
    • Design Selection Assembly
  • NEWS
  • Privacy Policy
  • Sister Sites

© 2023 EPCI - Premium Passive Components & Inter-Connect News

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.