• Latest
  • Trending

Non-Noble Finishes

September 10, 2022

Microwave Multi Line Connectors Mounting and Handling Precautions

March 27, 2023

Samtec New Interconnects Enhances Power and Signal Integrity

March 21, 2023
PCNS Passive Components Symposium 11-14th September 2023

PCB Via Design Selection; Plugging-Filling-Tenting

March 20, 2023

Lemo Releases New Multi Coaxial High Frequency Connector

March 2, 2023

Würth Elektronik Introduces Crimp SKEDD Connectors

March 1, 2023

binder Offers Sensor Connectors in Stainless-Steel to Protect Against Corrosion

March 1, 2023

Board-to-Board Connection & Antennas HF Connection

February 20, 2023

How to Ensure Board-to-Board Connectors Meet High-Speed Automotive Assembly and Use Requirements

February 16, 2023

Amphenol Enhanced its ePower-Lite EV Line to Include 3-Pole Connector

February 15, 2023

BASIC PCB Design Rules – Layout

February 15, 2023

Connector Inrush Current Explained

February 3, 2023

M8 Connectors for Smart Farming Applications

January 31, 2023
  • Privacy Policy
inter-connection blog
  • NEWS
  • Knowledge base
  • Sister Sites
    • Passive Components Blog
    • PCNS Symposium
    • The Passives Times
    • EPCI Home
  • About
No Result
View All Result
  • NEWS
  • Knowledge base
  • Sister Sites
    • Passive Components Blog
    • PCNS Symposium
    • The Passives Times
    • EPCI Home
  • About
No Result
View All Result
inter-connection blog
No Result
View All Result

Non-Noble Finishes

September 10, 2022
A A

Tin is the dominant non-noble contact finish due to its widespread use in connectors for commercial and industrial applications. Tin finishes are generally electroplated, though reflowed tin coatings are also used. The thickness of electroplated tin is generally in the range of 2.5 to 5.0 µm (100 to 200 microinches) with reflowed coatings being somewhat thicker.

Fig. 2.4: Tin contact finish

Tin provides corrosion protection to the contact spring due to the self limiting tin oxide film on the tin surface. As indicated in Figure 2.4, the oxide layer is very thin, hard and brittle and is readily displaced on mating of the connector resulting in tin-to-tin metallic contact areas. The major limitation to the use of tin as a general purpose connector contact finish is the fact that a tin-to-tin contact interface is susceptible to reoxidation if the interface experiences small scale movements due to mechanical or thermal stresses in the connector application environment. This degradation mechanism is called fretting corrosion.

Nickel and silver are also used in connector applications. Nickel has an even thinner oxide layer on its surface than tin. Nickel is most commonly used in battery contacts and also in high temperature applications. Silver surface films are primarily sulfides, tarnish films, which are also readily displaced on connector mating. Silver is used primarily in high current contacts due to the high electrical conductivity of silver and a better resistance to arcing damage compared to gold or tin contacts.

Related

Source: Wurth elektronik
Next Post

Contact Finish Degradation Mechanisms

Noble Metal Finish Degradation Mechanisms

Nickel Underplates and Noble Metal Finish Wear

Popular Posts

  • Crimped Connections

    0 shares
    Share 0 Tweet 0
  • Basic Principles of Connectors

    0 shares
    Share 0 Tweet 0
  • Space Saving Molex Connector in AR/VR System designs

    0 shares
    Share 0 Tweet 0
  • THR (Through Hole Reflow) Technology: Introduction & History:

    0 shares
    Share 0 Tweet 0
  • The Electrical Interface: Contact Resistance

    0 shares
    Share 0 Tweet 0

Archive

2023
2022

  • About
  • Inter-Connection News
  • Knowledge base
  • NEWS
  • Privacy Policy
  • Sister Sites

© 2023 EPCI - Premium Passive Components & Inter-Connect News

No Result
View All Result
  • About
  • Inter-Connection News
  • Knowledge base
    • Applications
    • Basic Principles of Connectors
    • Design Selection Assembly
  • NEWS
  • Privacy Policy
  • Sister Sites

© 2023 EPCI - Premium Passive Components & Inter-Connect News

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.