• Latest
  • Trending

Test Explanations: Mechanical Conditioning

September 14, 2022

binder Unveils Quick Lock Ruggedized Power Bayonet

October 3, 2023

Connector Temperature Rise and Derating

September 29, 2023

Connector Raw Material Costs Decreased 6.9 Percent in Q2 2023

September 27, 2023

Webinar PCBs: RIGID.flex with Flexible Soldermask or Coverlay?

September 20, 2023

Samtec Expands with a New Cable and RF Connector Manufacturing Facility in Pennsylvania

September 20, 2023

KYOCERA AVX Unveils New Series Poke-Home Single Contacts

September 20, 2023

Murata Announced Completion of New Plating Research Building in Japan

September 19, 2023

RF Compression-Mount Connectors Enhance Millimeter Wave Designs

September 1, 2023

Würth Elektronik Introduces micro SIM Card Interface with Card Detection

August 31, 2023

Yamaichi Extended Board-to-Cable Connectors for Battery Management

August 15, 2023

How the Connector Blade Assignments Impact Power Integrity 

August 15, 2023

How to Maintain 50 Ohms RF Transmission Path

August 15, 2023
  • Privacy Policy
inter-connection blog
  • Home
  • Knowledge base
  • Sister Sites
    • Passive Components Blog
    • PCNS Symposium
    • The Passives Times
    • EPCI Home
  • About
No Result
View All Result
  • Home
  • Knowledge base
  • Sister Sites
    • Passive Components Blog
    • PCNS Symposium
    • The Passives Times
    • EPCI Home
  • About
No Result
View All Result
inter-connection blog
No Result
View All Result

Test Explanations: Mechanical Conditioning

September 14, 2022
A A

Mechanical conditioning are intended to assess the mechanical stability of the contact interface under field conditions. As noted previously in this chapter, disturbances of the contact interface can be driven by either thermal or mechanical forces. The thermal forces result indirectly from thermal expansion mismatch stresses, thermal cycling or thermal shock, while the mechanical forces are applied directly, mechanical shock or vibration.

The difference between thermal cycling and thermal shock is the rate of change of temperature between the upper and lower temperature limits. Thermal cycling is generally a slow change in temperature, often by cycling either the applied current or the oven temperature, while thermal shock is generally rapid by moving the samples between chambers at different temperatures. An oven suitable for thermal cycling is shown in Figure 2.116 and a dual chamber, thermal shock oven, in Figure 2.117.

RelatedPosts

Connectors Explained

KYOCERA AVX IDC RF Shark Fin Connectors for Antennas Vehicle Systems

Binder Launches M12 Panel L-coded Mount Connectors

Fig. 2.116: Temperature life, thermal cycling oven
Fig. 2.117 : Dual chamber thermal shock oven

Thermal shock is further differentiated by the different thermal response times of the connector and system components. While the magnitude of the applied stresses may be the same for a given temperature change, the rate of application of the stresses in thermal shock is generally a more demanding environment. The thermal stresses realized are dependent on the size of the connector because the differential change in length is dependent on the length of the connector or system. This fact should be taken into consideration when selecting the samples to be tested. Table 2.7 lists typical conditions of thermal shock.

Tab. 2.7: Typical thermal shock parameters

Mechanical shock is generally intended to simulate transportation stresses, though there are some connector environments, e.g. automotive that experience mechanical shocks as a part of their application environment. The G values and number of shocks applied are application dependent.

Related

Source: Wurth elektronik
Next Post

Test Explanations: Vibration

Test Explanations: Corrosion

Levels of Interconnection

Popular Posts

  • Crimped Connections

    0 shares
    Share 0 Tweet 0
  • THR (Through Hole Reflow) Technology: Introduction & History:

    0 shares
    Share 0 Tweet 0
  • Basic Principles of Connectors

    0 shares
    Share 0 Tweet 0
  • The Electrical Interface: Contact Resistance

    0 shares
    Share 0 Tweet 0
  • Space Saving Molex Connector in AR/VR System designs

    0 shares
    Share 0 Tweet 0

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Archive

2023
2022

Newsletter Subscribe

  • About
  • Inter-Connection Blog
  • Inter-Connection News
  • Knowledge base
  • NEWS
  • Privacy Policy
  • Sister Sites
  • Subscribe

© 2023 EPCI - Premium Passive Components & Inter-Connect News

No Result
View All Result
  • About
  • Inter-Connection Blog
  • Inter-Connection News
  • Knowledge base
    • Applications
    • Basic Principles of Connectors
    • Design Selection Assembly
  • NEWS
  • Privacy Policy
  • Sister Sites
  • Subscribe

© 2023 EPCI - Premium Passive Components & Inter-Connect News

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.