• Latest
  • Trending

Connector Design/Selection/Assembly

September 10, 2022

Microwave Multi Line Connectors Mounting and Handling Precautions

March 27, 2023

Samtec New Interconnects Enhances Power and Signal Integrity

March 21, 2023
PCNS Passive Components Symposium 11-14th September 2023

PCB Via Design Selection; Plugging-Filling-Tenting

March 20, 2023

Lemo Releases New Multi Coaxial High Frequency Connector

March 2, 2023

Würth Elektronik Introduces Crimp SKEDD Connectors

March 1, 2023

binder Offers Sensor Connectors in Stainless-Steel to Protect Against Corrosion

March 1, 2023

Board-to-Board Connection & Antennas HF Connection

February 20, 2023

How to Ensure Board-to-Board Connectors Meet High-Speed Automotive Assembly and Use Requirements

February 16, 2023

Amphenol Enhanced its ePower-Lite EV Line to Include 3-Pole Connector

February 15, 2023

BASIC PCB Design Rules – Layout

February 15, 2023

Connector Inrush Current Explained

February 3, 2023

M8 Connectors for Smart Farming Applications

January 31, 2023
  • Privacy Policy
inter-connection blog
  • NEWS
  • Knowledge base
  • Sister Sites
    • Passive Components Blog
    • PCNS Symposium
    • The Passives Times
    • EPCI Home
  • About
No Result
View All Result
  • NEWS
  • Knowledge base
  • Sister Sites
    • Passive Components Blog
    • PCNS Symposium
    • The Passives Times
    • EPCI Home
  • About
No Result
View All Result
inter-connection blog
No Result
View All Result

Connector Design/Selection/Assembly

September 10, 2022
A A

This chapter will provide an overview of design and material requirements for contact finishes, contact springs and connector housings as well as the major degradation mechanisms for these connector components. Material selection criteria for each will also be reviewed.

Contact Finishes

Contact Finish Requirements

As noted in Chapter I/1.2.3 Contact Finishes, a contact finish is applied to connector contact springs to provide two basic functions:
• to protect the copper alloy spring members from corrosion
• to optimize the mechanical and electrical performance of the contact interface.

As noted in Chapter I/1.2.2 Contact Springs, connector contact springs are generally made from copper alloys due to their combination of high electrical conductivity and formability at reasonable strength levels. Unfortunately copper alloys are susceptible to corrosion in environments containing oxygen, sulfur and chlorine, in other words typical connector operating environments. Thus, the first function of a contact finish is to protect the copper alloy spring from corrosion.

Corrosion protection can be provided by simply coating the contact spring with a material which is not susceptible to corrosion or, in connectors, a material which forms films which are self limiting in thickness and readily displaced mechanically during the mating of a connector. Gold is the prime example of the first case and tin of the second. Each of these cases will be discussed later in this chapter.

“Optimization” of contact interface performance is provided by influencing the corrosion and wear characteristics of the contact interface. Corrosion protection is necessary in order to ensure that metal-to-metal a-spot contact interfaces can be created and maintained as discussed in Chapter I/1.3.1 Overview. Recall that chapter. We also note that creating and maintaining a metal-to-metal interface is the prime goal of connector design. A gold-to-gold contact interface is intrinsically metal-to-metal because gold does not corrode. A tin-to-tin contact interface becomes metal-to-metal when the surface tin oxide is displaced on mating of the connector. There are some qualifications to this simple description that will be discussed later in this chapter.

“Optimization” of contact interface wear characteristics is particularly important with gold contact finishes. The concern is that the wear that occurs on each mating cycle can result in wear through of the contact plating exposing the underlying copper alloy which is then susceptible to corrosion. The wear performance of gold finishes can be improved by increasing the hardness of the gold by alloying and by increasing the effective hardness of the gold by using a nickel underplate.

Consider noble metal finishes first.

Related

Source: Wurth Elektronik
Next Post

Noble Metal Finishes

Non-Noble Finishes

Contact Finish Degradation Mechanisms

Popular Posts

  • Crimped Connections

    0 shares
    Share 0 Tweet 0
  • Basic Principles of Connectors

    0 shares
    Share 0 Tweet 0
  • Space Saving Molex Connector in AR/VR System designs

    0 shares
    Share 0 Tweet 0
  • THR (Through Hole Reflow) Technology: Introduction & History:

    0 shares
    Share 0 Tweet 0
  • The Electrical Interface: Contact Resistance

    0 shares
    Share 0 Tweet 0

Archive

2023
2022

  • About
  • Inter-Connection News
  • Knowledge base
  • NEWS
  • Privacy Policy
  • Sister Sites

© 2023 EPCI - Premium Passive Components & Inter-Connect News

No Result
View All Result
  • About
  • Inter-Connection News
  • Knowledge base
    • Applications
    • Basic Principles of Connectors
    • Design Selection Assembly
  • NEWS
  • Privacy Policy
  • Sister Sites

© 2023 EPCI - Premium Passive Components & Inter-Connect News

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.